Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
V 70. letech minulého století chtěly Spojené státy využít silného, atomovou bombou iniciovaného rentgenového laseru na obranu proti balistickým střelám. Projekt Excalibur nebyl nikdy dokončen a ještě dnes nám připadají úvahy o velkých výkonných laserových zařízeních jako z vědecko-fantastického románu. Právem? Nedávno špičkové laserové centrum HiLASE stalo místem setkání vědců z celého světa, aby diskutovali technologické možnosti využití silných laserových zdrojů pro aplikace budoucnosti.
Americký kosmolog Philip Lubin představil a detailně popsal technologická úskalí i výhody konceptu flotily stovek malých satelitů o hmotnosti kolem 10 g, které by mohly působením pole vláknových laserů o ploše kolem 900 m2 a celkovém výkonu kolem 100 GW dosáhnout během několika minut relativistických rychlostí. Z Lubinovy přednášky vyplynulo zajímavé zjištění: Tato mezihvězdná mise by se dala již za pomoci současných technologií připravit v horizontu dvou dekád. Po asi 20 letech technologického vývoje, jehož kroky jsou podle Lubina zcela jasně vymezeny, bychom mohli flotilu satelitů vyslat k nejbližším hvězdám systému Alfa Centauri. Po dalších asi 25 letech bychom měli k dispozici první snímky a měření. Odpovězme si však sami, jestli jsou toho lidé současnosti schopni. Možná, že naši dědové létající s tehdejší (v porovnání s dneškem) relativně primitivní technikou na Měsíc by se takové výzvy nebáli.
Motorem současnosti je globalizace a dobrý byznys. I v této oblasti však mají výkonové laserové zdroje co nabídnout. Často se diskutuje o vyčerpání nerostného bohatství na Zemi. Mnozí dobře vědí o problému s ropou či uhlím, ne tolik se ale hovoří o jiné plíživé hrozbě: vyčerpání zásob rud mědi, zinku a zejména pak vzácných kovů například pro elektroniku či optiku. Čeho se na Zemi nedostává, to je ve vesmíru celkem běžné. V pásu asteroidů se zřejmě nachází nepřeberná pokladnice rud. Ale kde je máme v oblasti někde mezi 2,1 a 3,3 AU hledat? Na tuto otázku by možná mohla odpovědět flotila sond určených pro prospekci nerostného bohatství. Přistávat na každém asteroidu družice nemohou. Mohly by však pomocí silného laserového zdroje ablovat jejich povrch a spektrometrem detekovat emisní linie vyzařované atomy kovů v plazmatu vzniklého odpařením povrchu studovaného tělesa. Rychlé, relativně levné a efektivní.
Od konceptu k realitě však vede dlouhá cesta. Jedno z úskalí takové mise se snaží vyřešit také čeští vědci z Ústavu fyzikální chemie J. Heyrovského pod vedením Martina Feruse a Miroslava Krůse z Ústavu fyziky plazmatu. Badatelé testují podmínky a parametry ablace reálných vzorků meteoritů pomocí výkonového sálového laseru PALS. Jaký laser bude skutečně ten nejlepší pro odpaření velké masy povrchu? Liší se nějak působení laserů na horniny a minerály běžné v meziplanetárním prostoru od nerostů na Zemi? Češi na workshopu představili prvotní závěry svých výzkumů provedených pomocí dvou extrémně výkonných českých laserů: PALSu (Prague Asterix Lasers System) a také interakční testy určené pro mechanické působení na centru HiLASE.
Srovnání s malými laboratorními zdroji jasně ukazuje, že výkonné lasery jsou pro taková měření velmi vhodné, protože odpaří velkou část povrchu a velký výkon vede k vyzáření velmi širokého spektra atomárních čar. Kromě toho se ukazuje, že enormní výkon těchto laserů dovoluje studovat přírodní jevy, které se v laboratoři za kontrolovaných podmínek jinak velmi obtížně napodobují, ať už se jedná o dopad asteroidu na povrch planety či jen „pouhou“ padající hvězdu, tedy meteor.
|
Velký laser na palubě satelitů, na odvrácené straně Měsíce či na Zemi by však nemusel sloužit jen k cestování ke hvězdám nebo prospekci nerostů na asteroidech. Možná jsme žili v blažené nevědomosti, ale rozvoj současných observačních technologií odhalil, jak často se kolem naší planety prožene asteroid pocházející z naší sluneční soustavy, ale i z mezihvězdných dálav. Mnohé z blízko zemních objektů velmi dobře známe – těch tzv. nebezpečných jsou evidovány tisíce. Ochranu před nimi by mohly poskytnout právě pole výkonových laserů.
Vědci na setkání představili celou řadu konceptů a také celou řadu technických problémů, od koncentrování a slučování svazku až po problematiku mezinárodního práva. Je vysoce pravděpodobné, že i kdybychom takový laser měli, pravděpodobně by fungoval na principu postupného ablování povrchu spojeného s odkloněním dráhy. Například těleso o průměru 200 m by se podařilo laserem o výkonu 500 kW odklonit během 1 roku. Současná raketa Ariane 5 by mohla do vesmíru vynést „pouze“ satelit vybavený laserovým polem s výkonem 300 kW napájeného solárním článkem o průměru 25 m. Tento laser by asteroid odklonil za asi 3 roky. Je tedy jasné, že obrovské těleso řítící se z kosmických dálav odhalené třeba jen měsíc před dopadem tak s největší pravděpodobností nezničíme ani v horizontu příštích dekád. Lidem tak nezbude nic jiného než spoléhat na štěstí, které je zatím provází celých 200 000 let existence Homo sapiens.
Martin Ferus
Výzkum simulace spekter meteorů pomocí výkonových laserů je podporován Grantovou agenturou ČR v rámci grantu 18-27653S (Dr. Martin Ferus). Spektrální astronomické sledování meteorů je podpořeno v rámci regionální spolupráce s Hvězdárnou Valašské Meziříčí Akademií věd ČR projektem R200401801 (Dr. Martin Ferus). Observační část je vedena Ing. Liborem Lenžou, Ing. Jakubem Koukalem a Jiřím Srbou. Výzkum interakce laserového záření s meziplanetární hmotou je podpořen Technologickou agenturou ČR v rámci projektu TL01000181. Projekt je veden Dr. Nikolou Schmidtem z Fakulty sociálních věd UK a Ústavu mezinárodních vztahů AV ČR. Na straně centra HiLASE jsou experimenty vedeny Dr. Janem Brajerem a Dr. Tomášem Mockem. Děkujeme za pomoc s charakterizací fyzikálních účinků firmě Keyence a firmě Crytur Turnov. Kontakt za autorský kolektiv: martin.ferus@jh-inst.cas.cz, více např. na https://www.jh-inst.cas.cz/sites/www.drupal/files/inline-files/TZ.pdf