Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
Nová studie naznačuje, že některé exoplanety mohou mít lepší podmínky pro rozvoj života než naše Země. „To je překvapující závěr,“ říká Stephanie Olson, vedoucí vědecká pracovnice. „Ukazuje nám to, že na některých exoplanetách s globálním oceánem a příznivým prouděním mohou být lepší podmínky podporující život, který je mnohem hojnější i mnohem aktivnější než život na Zemi.“
Objev exoplanet akceleroval pátrání po životě za hranicemi Sluneční soustavy. Obrovské vzdálenosti k těmto planetám však znamenají, že je nemožné je efektivně zkoumat pomocí kosmických sond, takže vědci musí pracovat s nástroji dálkového průzkumu, jako jsou teleskopy k pochopení toho, jaké podmínky převládají na různých exoplanetách. Uskutečnění testování těchto pozorování na dálku vyžaduje přípravu důmyslných modelů klimatu na planetách a jeho vývoje umožňujícího vědcům rozpoznat, které z těchto vzdálených planet mohou hostit život.
Nové shrnutí této práce prezentovala na kongresu Goldschmidt Geochemistry Congress v Barceloně Stephanie Olson (University of Chicago), která popsala probíhající výzkum za účelem poznání nejlepšího prostředí pro život na exoplanetách:
„Pátrání po životě ve vesmíru, které provádí NASA, je zaměřeno na tzv. obyvatelné zóny, které kolem většiny hvězd existují. Na povrchu planet obíhajících v těchto oblastech by mohly být příznivé podmínky pro výskyt kapalné vody v podobě oceánů. Avšak ne všechny oceány jsou dostatečně vhodné pro život – některé oceány budou lepším místem pro život než jiné v důsledku charakteru globální cirkulace.“
Vědecký tým pod vedení Stephanie Olson modeloval možné podmínky na různých typech exoplanet pomocí softwaru ROCKE-3-D vyvinutého na NASA's Goddard Institute for Space Studies (GISS), který umožňuje simulovat klima a obyvatelnost oceánů na rozdílných typech exoplanet.
„Naše práce byla zaměřena na identifikování oceánů exoplanet, které mají největší způsobilost hostit celkově překypující a aktivní život. Život v pozemských oceánech závisí na vzestupných proudech, které navracejí živiny z temných hlubin oceánů do jejich prosluněných oblastí, kde probíhá fotosyntéza. Více výstupních proudů znamená větší dodávku živin. To jsou podmínky, které musíme na exoplanetách vyhledávat.“
Vědci modelovali rozmanitost vhodných exoplanet a byli schopni definovat, jaké typy planet mají největší šanci na rozvoj a udržení prosperující biosféry.
„Použili jsme model cirkulujícího oceánu k rozpoznání, které planety budou mít nejvhodnější výstupné proudy a tudíž poskytují mimořádně obyvatelné oceány. Zjistili jsme, že vyšší hustota atmosféry, pomalejší rychlost rotace a přítomnost kontinentů poskytuje vyšší četnost výstupných proudů v oceánu. Dalším výsledkem je, že Země nemůže být optimálně obyvatelná – život se může vyskytovat někde jinde na planetách, které jsou dokonce mnohem příznivější pro život než Země.“
„Budou existovat určitá omezení našich technologií, tudíž život je téměř určitě mnohem běžnější než zatím dovedeme pozorovat. To znamená, že naše pátrání po životě ve vesmíru bychom měli zaměřit na podmnožinu obyvatelných planet, které budou mít mnohem příhodnější a celkově aktivnější biosféry, protože se jedná o planety, kde život může být snadněji detekovatelný.“
Stephanie Olson poznamenává, že zatím nemáme k dispozici teleskopy, které by mohly identifikovat vhodné exoplanety a prověřit tyto hypotézy, avšak říká, že „teoreticky může tato práce inspirovat konstruktéry teleskopů a postarat se o to, že budoucí mise jako například navržené koncepce observatoří LUVOIR a HabEx mohou mít ty správné schopnosti; zatím víme, co chceme spatřit, a tak musíme zahájit přípravu na pozorování.“
Profesor Chris Reinhard (Georgia Institute of Technology) k tomu dodává: „Očekáváme oceány, které budou důležité při regulování některých velmi závažných na dálku detekovatelných signálů života na obyvatelných tělesech, avšak naše chápání oceánů za hranicemi Sluneční soustavy je v současné době na samotném počátku. Práce Stephanie Olson představuje významný a vzrušující krok podporující naše poznání exoplanetární oceánografie.“
První exoplaneta byla objevena v roce 1992 a v současné době známe více než 4 100 potvrzených planet mimo Sluneční soustavu. Nejbližší známou exoplanetou je Proxima Centauri b, která je od Země vzdálena 4,25 světelného roku. Aktuálně je většina výzkumů zaměřených na pátrání po životě na exoplanetách orientována na ty, které se nacházejí v obyvatelných zónách hvězd, což je rozpětí vzdáleností od hvězdy, v nichž je na povrchu planet teplota umožňující výskyt kapalné vody. To je rozhodující pro život, jaký známe na Zemi.
Zdroj: https://phys.org/news/2019-08-exoplanets-greater-variety-life-earth.html a http://www.sci-news.com/astronomy/diverse-alien-life-07531.html
autor: František Martinek