Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
Nové závěry z kosmické sondy Juno, kterou NASA vypustila k Jupiteru, napovídají, že největší planeta Sluneční soustavy je domovem tzv. „plytkých blesků“. Neočekávaná podoba těchto elektrických výbojů má svůj původ v oblacích kontaminovaných roztokem vody a čpavku, zatímco blesky na Zemi vznikají ve vodních oblacích. Další nová zjištění napovídají, že prudké bouře, kterými je obří plynná planeta proslulá, mohou vést k vytvoření rozbředlých, na amoniak bohatých ledových krup.
Vědecký tým sondy Juno je nazývá „kašovité koule“; astronomové předpokládají, že tyto kašovité koule v podstatě na sebe navazují čpavek a vodu v horních vrstvách atmosféry a dopravují je do hlubin atmosféry planety Jupiter. Objev plytkých blesků byl publikován 6. srpna 2020 v časopise Nature, zatímco informace o kašovitých koulích jsou v současné době dostupné online v časopise Journal of Geophysical Research: Planets.
Od doby, kdy sonda NASA s názvem Voyager poprvé zaregistrovala záblesky v Jupiterově atmosféře v roce 1979, objevila se úvaha, zda je toto blýskání podobné úkazům na Zemi, vyskytujícím se pouze v bouřích, kde voda existuje ve všech fázích – v podobě ledu, vody a vodní páry. Na Jupiteru by taková oblast bouří byla zhruba o 45 až 65 km níže pod viditelnými oblaky, s teplotou balancující kolem nuly stupňů Celsia, což je teplota, při které zamrzá voda. Voyager a další kosmické sondy vypuštěné k obří plynné planetě před sondou Juno, registrovaly blesky jako jasné skvrny v horních částech oblaků Jupitera. To vedlo k závěru, že záblesky mají původ v hlubokých vodních oblacích. Avšak záblesky pozorované na noční straně Jupitera aparaturou Stellar Reference Unit na palubě sondy Juno říkají něco jiného.
„Těsné průlety sondy Juno nad vrcholky oblaků nám umožnily spatřit něco překvapujícího – menší slabší záblesky – které mají původ v mnohem větších výškách Jupiterovy atmosféry, než bylo možné podle dřívějších předpokladů,“ říká Heidi Becker, vedoucí výzkumu Radiation Monitoring Investigation sondou Juno, pracovnice na Jet Propulsion Laboratory in Southern California, NASA a hlavní autorka článku v časopise Nature.
Heidi Becker a její spolupracovníci se domnívají, že mohutné bouře na Jupiteru vyvrhují krystaly vodního ledu vysoko do atmosféry planety, více než 25 km nad Jupiterova vodní oblaka, kde se střetávají s parami atmosférického čpavku, které taví led a vytvářejí nový roztok čpavku a vody. Takto vysoko teplota klesá na hodnoty více než mínus 88 °C – což je velká zima na existenci čisté kapalné vody.
„V těchto výškách působí čpavek jako nemrznoucí směs, snižuje bod tání vodního ledu a umožňuje vznik oblaků z kapalné směsi voda-čpavek,“ říká Heidi Becker. „V této nové situaci padající kapičky složené z vody a čpavku se mohou střetávat se vzestupnými krystalky vodního ledu a elektrizovat oblaka. To bylo velkým překvapením, protože oblaka z vodní páry a čpavku na Zemi neexistují.“
Slabé blesky ovlivňují i jiné záhady fungování vnitřní atmosféry Jupitera: mikrovlnný radiometr na sondě Juno objevil, že čpavek byl spotřebován – což znamená, že zde chybí – ve většině Jupiterovy atmosféry. Dokonce větší záhadou bylo, že se množství čpavku mění s pohybem uvnitř atmosféry planety Jupiter.
„Předtím astronomové zjistili, že zde existovaly malé kapsy chybějícího čpavku, avšak ani v jednom případě nebylo zjištěno, jak hluboko tyto kapsy sahaly nebo že pokrývaly většinu planety Jupiter,“ říká Scott Bolton, hlavní vědecký pracovník mise Juno ze Southwest Research Institute, San Antonio. „Snažili jsme se vysvětlit spotřebování čpavku samotným deštěm čpavkové vody, avšak takový déšť by nemohl sahat dostatečně hluboko, aby to odpovídalo pozorování. Uvědomil jsem si, že pevné útvary podobné ledovým kroupám by mohly klesnout hlouběji a navázat mnohem více čpavku. Když Heidi Becker objevila slabé blesky, uvědomili jsme si, že jsme našli důkazy, že se čpavek mísí s vodou vysoko v atmosféře, a tudíž blesky byly klíčem k vyřešení záhady.“
Kašovité koule na Jupiteru
Druhý článek vydaný v časopise Journal of Geophysical Research: Planets, představuje podivnou směs 2/3 vody a 1/3 plynného čpavku, která se stává zárodkem pro kroupy na Jupiteru, označované jako „kašovité koule“. Složené z vrstev rozbředlé směsi vody a čpavku, které jsou pokryty ledem vytvářejícím tlustou kůru z vodního ledu, jsou kašovité koule vytvářeny podobným způsobem jako kroupy na Zemi – narůstáním do větších rozměrů při pohybu nahoru a dolů skrz atmosféru.
„Nakonec jsou tyto kašovité koule tak velké, že se nemohou udržet ve vzduch a padají hlouběji do atmosféry, kde se setkávají s teplejším prostředím a zde se časem zcela vypaří,“ říká Tristan Guillot, spolupracující vědecký pracovník z Université Côte d'Azur in Nice, Francie a hlavní autor druhého článku. „Jejich působení odnáší čpavek a vodu dolů do hlubších oblastí atmosféry planety. To vysvětluje, proč nemůžeme zahlédnout více vody a čpavku v těchto místech pomocí přístroje Microwave Radiometer na palubě sondy Juno.“
„Zkombinování těchto dvou závěrů bylo rozhodující k vyřešení záhady chybějícího čpavku na Jupiteru,“ říká Scott Bolton. „Jak se ukázalo, čpavek ve skutečnosti nechybí; akorát je transportován dolů. Řešení je velmi prosté a elegantní podle následující teorie: Když jsou voda a čpavek v kapalném stavu, jsou pro nás neviditelné, dokud nedosáhnou hloubky, kde se vypaří – a to je docela hluboko.“
Porozumění meteorologii na Jupiteru nám umožňuje vyvinout teorie atmosférické dynamiky pro všechny planety ve Sluneční soustavě, stejně tak pro exoplanety, které byly objeveny u cizích hvězd. Porovnání, jak prudké bouře a atmosférická fyzika fungují napříč Sluneční soustavou, umožní planetologům testovat teorie za různých podmínek.
Sonda Juno, které dodávají energii sluneční články, byla vypuštěna 5. 8. 2011. Nedávno uplynuly čtyři roky od jejího navedení na oběžnou dráhu kolem planety Jupiter. Za tu dobu absolvovala 27 vědeckých průletů v těsné blízkosti obří plynné planety.
Zdroj: https://www.nasa.gov/feature/jpl/shallow-lightning-and-mushballs-reveal-ammonia-to-nasas-juno-scientists a https://www.jpl.nasa.gov/news/news.php?feature=7721
autor: František Martinek