Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
Zdá se, že nejbližší planeta u Slunce, Merkur, je pravidelně bombardována meteorickým deštěm, pravděpodobně spojeným s kometou, která produkuje četné meteorické roje také na Zemi.
Možný objev tohoto meteorického roje na Merkuru je opravdu vzrušující a obzvlášť důležitý, protože prostředí z plazmy a prachu kolem planety je relativně neprozkoumané.
Meteorický roj nastane, když se planeta střetne s troskami komety, popřípadě asteroidu. Malé částice prachu či úlomky kamene a ledu vytvářejí při přiblížení komety ke Slunci její ohon, větší kusy za sebou kometa při letu zanechává po celé své dráze. Jak jistě všichni víme, na Zemi můžeme pozorovat během roku mnoho meteorických rojů. V létě jsou například velmi známé Perseidy (mateřským tělesem je kometa Swift-Tuttle), v prosinci spolehlivé Geminidy, meteorický roj související s prakticky neaktivní kometou Phaeton – toto těleso bylo po dlouhou dobu považováno za asteroid.
Stopy, které ukazují na existenci meteorického roje na Merkuru, byly objeveny ve velmi tenkém halu plynů, které tvoří exosféru planety. Tu v současnosti zkoumá sonda MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging).
Hlavní indicií zjištění výskytu meteorického roje na Merkuru je pravidelný nárůst vápníku v exosféře. Měření atmosféry a složení povrchu zjištěná pomocí spektrometru na sondě MESSENGER ukázaly sezónní nárůst vápníku, k němuž docházelo pravidelně v průběhu prvních devíti let po vypuštění sondy, která byla v březnu 2011 navedena na stabilní oběžnou dráhu kolem Merkuru po dvou průletech kolem Venuše a třech kolem Merkuru.
Hlavní příčinou kolísání objemu vápníku je déšt malých prachových částic dopadajících na planetu, které tímto vyvrhují molekuly vápníku z povrchu do atmosféry planety. Tento proces, nazývaný impaktní odpařování, neustále obnovuje plyny v exosféře Merkuru. Nicméně tento neustále dopadající meziplanetární prach z vnitřní části sluneční soustavy nemůže sám o sobě vytvářet periodický nárůst vápníku v atmosféře. To naznačuje pravidelný zdroj prachu nad rámec běžného bombardování planety, například částice z trosek komety. Výzkum hrstky komet křížící dráhu planety Merkur ukazuje, že pravděpodobným zdrojem těchto periodických změn na planetě je komplex komety Encke, který je výrazným zdrojem meteorické aktivity i na Zemi.
Enckeova kometa byla objevena francouzským astronomem Pierrem Méchainim roku 1786. Není však pojmenovaná po svém objeviteli, ale po Johannu Enckovi, který provedl výpočty její dráhy a stanovil oběžnou dobu na 3,3 roku. Od svého objevu byla ze Země pozorována již mnohokrát, vzhledem k odhadu značného stáří komplexu komety Encke zanechala ve své dráze spoustu vyvrženého materiálu. To se projevilo samozřejmě také v meteorické činnosti na Zemi, nejznámějším meteorickým rojem spojeným s kometou Encke jsou pravděpodobně Tauridy, které mají maximum v listopadu a obsahují dvě větve, severní a jižní. Dále je s komplexem komety Encke spojeno množství dalších meteorických rojů, které jsou v činnosti od srpna do února. Většinou se jedná o roje s nižšími frekvencemi a dlouhou dobou aktivity, což ukazuje na značné stáří celého meteorického komplexu této komety.
Kometa 2P/Encke. Autor: Damian Peach
Pokud je tedy tento scénář správný, je Merkur obřím lapačem prachu. Povrch Merkuru je neustále bombardován částicemi mezihvězdného prachu, jelikož atmosféra Merkuru je příliš řídká a nezachytí tudíž žádné částice, jak je tomu např. na Zemi. Kromě toho však Merkur pravidelně prochází prachovou bouří částic, které s nejvyšší pravděpodobností pochází z komety Encke.
Vědci vytvořili detailní počítačové simulace, aby otestovali hypotézu souvislosti komety Encke a meteorického roje na Merkuru. Data získaná ze sondy MESSENGER se nicméně od očekávaných výsledků odchylovala. Tyto odchylky jsou pravděpodobně způsobeny gravitačními změnami dráhy komety Encke v důsledku působení planety Jupiter a také dalších těles ve Sluneční soustavě.
Změny množství vápníku v atmosféře Merkuru související s polohou planety na své orbitě jsou známé již několik let a jsou výsledkem výzkumu sondy MESSENGER. Avšak spojení těchto variací s meteorickým deštěm a konkrétní kometou je nové. Studie, která se tímto zabývá, by měla poskytnout základ pro další výzkum interakce meteorických rojů s Merkurem v prostředí vnitřní části Sluneční soustavy.
Zdroj: http://www.nasa.gov/news
autor: Sylvie Gorková