Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
Studiem fosilních „kapek“ vody mohou vědci odhalit drahocenné informace o atmosféře mladé Země. Výzkum by mohl výrazně zpřesnit modely pradávné Země a pomoci astrobiologům porozumět vlastnostem prostředí, ve kterém vznikl na naší planetě život.
V dávné historii Země, v době krátce po jejím vzniku, vyzařovalo Slunce asi o 30 % energie méně než dnes. Teoreticky mohla tehdy nastat taková situace, že by celý povrch Země pokryla ledová pokrývka. Existují však geologické důkazy, že tomu tak nebylo – existence říčních a mořských sedimentů z období před 2 až 4 miliardami roků, tudíž na zemském povrchu se nacházela voda.
Vědci předpokládají, že tehdejší teplota musela být dostatečná k tomu, aby voda mohla existovat v kapalném stavu, což mohlo být důsledkem přítomnosti velmi husté atmosféry, vysokého množství skleníkových plynů či kombinace obou jevů.
Nyní vědci z University of Washington použili svědectví „zkamenělých“ otisků dešťových kapek z doby před 2,7 miliardami roků k určení atmosférického tlaku v té době, čímž dokázali, že ke zvýšení teploty vedlo s největší pravděpodobností velké množství skleníkových plynů.
Tato vědecká práce, která má význam rovněž pro hledání života na jiných planetách, byla publikována 28. 3. 2012 v časopise Nature.
„Protože Slunce v té době svítilo mnohem méně než dnes, tak pokud by byla tehdejší atmosféra stejná jako v dnešní době, pak by byl povrch naší Země zmrzlý,“ říká vedoucí autor článku Sanjoy Som, postgraduální vědecký pracovník NASA (Ames Research Center, Mountain View, Kalifornie), který prováděl tento výzkum jako součást své doktorandské práce v oboru Země a vesmírný výzkum.
Znalost atmosférického tlaku v daném období může pomoci vědcům lépe a detailně pochopit celkovou povahu atmosféry té doby. Například podstatně vyšší tlak by byl potřebný pro jev, který umožňuje existujícím skleníkovým plynům absorbovat mnohem více záření a zvyšovat tak teplotu planety. To byla jedna ze spekulací o příčině existence vyšší teploty na povrchu pradávné Země.
Avšak velmi přesná měření atmosférického tlaku máme k dispozici až z doby po vynálezu barometru v roce 1614. Nová práce umožňuje vědcům určit hranice (limity) tlaku vzduchu v dávných dobách porovnáním otisků dešťových kapek z dnešní doby se zkamenělými otisky kapek z doby, kdy na Zemi nebyly ani rostliny, ani živočichové, ale planeta se jen hemžila mikroorganismy.
Velikost otisků kapek deště závisí na jejich rychlosti, na atmosférickém tlaku a na složení materiálu, do kterého dešťové kapky padají. Dřívější výzkumy ukazovaly, že dešťové kapky dopadající na zemský povrch nepřevyšovaly svým průměrem jednu čtvrtinu palce (tj. asi 6 mm). To je také největší kapka, která může vytvořit největší zkamenělý otisk bez ohledu na atmosférický tlak.
Tyto velké dešťové kapky v dnešní atmosféře padají rychlostí kolem 10 metrů za sekundu, avšak pokud dávná atmosféra byla hustější, potom rychlost pádu kapek byla nižší a maximální velikost zanechaných otisků by byla menší.
Roger Buick a Jelte Harnmeijer, členové výzkumného týmu, zalili latexem zkamenělé otisky dešťových kapek v sopečném popelu nalezeném v Jižní Africe, následně odvezli latexový odlitek do Seattlu, kde pomocí velmi přesného laseru provedli detailní měření důlků po dopadu jednotlivých kapek.
Mezitím byla provedena měření otisků dešťových kapek, které byly vytvořeny v současnosti, za aktuálního atmosférického tlaku. Sanjoy Som a Peter Polivka použili pipetu k vytváření vodních kapek různých velikostí dopadajících do nedávného vulkanického popela, odebraného na Havaji a Islandu. Vodní kapky padaly do vzorků z výšky přibližně 30 metrů. Složení sopečného popela bylo podobné jako u kamene, v němž byly nalezeny fosilizované otisky dešťových kapek. Výzkumníci použili tekutý průzračný plast ke zpevnění otisků, které byly následně snímány pomocí laseru a snímky porovnávány s otisky z jižní Afriky.
Při srovnávání otisků dešťových kapek Sanjoy Som zjistil, že pokud by byly největší otisky vytvářeny největšími možnými kapkami, potom by atmosférický tlak na povrchu Země v období před 2,7 miliardami roků nebyl vyšší než dvojnásobek dnešního tlaku. Ale největší možné dešťové kapky se vyskytují velice zřídka, takže je velmi pravděpodobné, že hodnota atmosférického tlaku byla stejná jako dnes, možná dokonce ještě nižší. To by upřednostňovalo nahromadění skleníkových plynů v atmosféře k vysvětlení „teplé“ Země spíše než vliv zvyšujícího se tlaku.
Sanjoy Som prohlásil, že tento objev může být velmi důležitý pro hledání života na planetách obíhajících kolem jiných hvězd než Slunce, na tzv. exoplanetách. To proto, že před 2,7 miliardami roků byla Země velmi odlišná od stavu, v jakém je dnes a tehdejší prostředí také umožňovalo překypující život v podobě mikroorganismů.
„Nastavení limitů pro atmosférický tlak je prvním krokem k pochopení, jaké tehdy bylo složení atmosféry. Na základě těchto poznatků rozšíříme známá fakta, která máme k dispozici pro porovnání vlastností exoplanet, jež mohou podporovat existenci života,“ říká Sanjoy Som.
„Dnešní Země a dávná Země jsou jako dvě odlišné planety,“ dodává Sanjoy Som.
Zdroj: http://www.astrobio.net/pressrelease/4668/fossil-raindrops-reveal-early-atmosphere
autor: František Martinek