Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Jako každý rok se i letos sešli nadšení pozorovatelé ze širokého okolí, aby pod rouškou tmy ulehli na hvězdárenské louce a společně číhali na krásné Perseidy, jejichž aktivita právě večer 12. srpna vrcholila. Ti, kteří spatřené meteory počítali, hlásili za večer až 29 perseid, což je číslo vskutku krásné. K vidění ovšem nebyly jen „padající hvězdy“, v kopuli hlavní budovy byla také možnost dalekohledem sledovat Měsíc, jasné hvězdy a okolo jedenácti hodin i Saturn.
„Troufám si říci, že se akce velmi vydařila. Děkujeme všem za návštěvu a těšíme se na další ročník,“ dodává nakonec ředitel hvězdárny.
EHT (Event Horizon Telescope) - skupina osmi pozemských radioteleskopů rozložená po celé Zemi - byl vytvořen proto, aby zachytil obraz černé díry. Dnes, v několika dohromady koordinovaných tiskových konferencích, vědci EHT ukázali první přímý vizuální důkaz supermasivní černé díry a jejího stínu.
Průlomové pozorování bylo dnes oznámeno v sérii šesti vědeckých článků publikovaných ve speciálním vydání časopisu The Astrophysical Journal Letters. Obrázek ukazuje černou díru v centru galaxie M87 [1], která leží v blízké kupě galaxií v souhvězdí Panny. Černá díra je od Země vzdálena 55 milionů světelných let a váží 6,5 miliard Sluncí [2].
EHT spojuje přístroje rozmístěné po zeměkouli do jednoho ohromného virtuálního dalekohledu o rozměru Země [3]. Díky EHT mohou vědci studovat nejextrémnější objekty ve vesmíru způsobem, který předpovídá Einsteinova obecná teorie relativity. Podstata této metody byla poprvé vyzkoušena před sto lety při historickém pokusu, který teorii relativity ověřoval [4].
"Pořídili jsme první snímek černé díry," řekl projektový ředitel EHT Sheperd S. Doeleman z Astrofyzikální centra (Harvard & Smithsonian). "Je to úžasný vědecký výkon, na kterém se podílelo více než 200 vědců."
Černé díry jsou zvláštní kosmické objekty - s vysokou hmotností a extrémně kompaktní. Přítomnost těchto objektů výrazně ovlivňuje jejich okolí, protože zakřivují prostoročas a silně zahřívají okolní materiál.
"Pokud bude černá díra uvnitř nějaké jasné oblasti, třeba uvnitř disku zářícího plynu, očekáváme, že černá díra vytvoří tmavou oblast, něco jako stín. Einsteinova obecná teorie relativity tento jev předpovídá, ale dosud nikdy jsme ho neviděli," vysvětluje předseda vědecké rady EHT Heino Falcke z Radboudovy univerzity (Nizozemí). "Stín černé díry, způsobený gravitačním ohybem světla a jeho záchytem pod horizontem událostí, odhaluje spoustu informací o podstatě těchto fascinujících objektů a umožnil nám změřit hmotnost černé díry v centru M87."
Zpracování naměřených údajů za pomoci různých kalibračních technik a zobrazovacích metod ukázalo přítomnost prstencového útvaru s tmavou centrální oblastí - stínem černé díry - která existovala v různých nezávislých EHT pozorováních.
"Když jsme si byli jistí, že jsme opravdu vyfotografovali stín černé díry, srovnávali jsme náš výsledek s rozsáhlým souborem počítačových modelů, které obsahují různé fyzikální jevy, jako je distorze prostoročasu, přehřátí hmoty a silná magnetická pole," objasňuje člen rady EHT Luciano Rezzolla z Goethovy univerzity (Německo). "Pozorovaný snímek se dobře shoduje s naším teoretickým popisem a díky tomu se cítíme celkem jistí při interpretaci pozorování, včetně odhadu hmotnosti černé díry."
Vytvoření EHT byl impozantní výkon. Osm již existujících dalekohledů na nejrůznějších vysokohorských lokacích na Zemi se muselo propojit a vzájemně sjednotit. K těmto dalekohledům patřily přístroje na sopkách na Havaji a v Mexiku, na horách v Arizoně a španělské Sierra Nevadě, v chilské poušti Atacama a v Antarktidě.
Pozorování pomocí EHT používají metodu zvanou interferometrie na velmi dlouhých vzdálenostech (VLBI), která synchronizuje dalekohledy na celém světě a využívá rotace naší planety k vytvoření jednoho obrovského - o rozměrech Země - dalekohledu. Pozorování probíhalo na vlnové délce 1,3 mm. EHT má díky VLBI úhlové rozlišení 20 úhlových mikrovteřin - to by tak asi stačilo návštěvníku kavárny v Paříži číst noviny ve výloze novinového stánku v New Yorku. [5]
Dalekohledy, které se účastnily pozorování M87, byly ALMA, APEX, 30m dalekohled IRAM (IRAM 30m telescope), Maxwellův dalekohled (James Clerk Maxwell Telescope), velký milimetrový dalekohled Alfonse Serrana (Large Millimeter Telescope Alfonso Serrano), submilimetrové pole (Submillimeter Array), submilimetrový dalekohled (Submillimeter Telescope) a dalekohled na jižním pólu (South Pole Telescope) [6]. Petabyty vstupních dat byly zpracovávány vysoce specializovanými superpočítači v Ústavu Maxe Plancka pro radioastronomii a na observatoři MIT Haystack.
Evropská zařízení a financování hrály v této celosvětové záležitosti důležitou roli. Pozorování se účastnily moderní evropské dalekohledy a Evropská vědecká rada (ERC, European Research Council) podpořila projekt BlackHoleCam [7] grantem na 14 milionů Euro. Důležitá byla také podpora z ESO, IRAMu a společnosti Maxe Plancka. "Dnešní výsledek je založen na desetiletích evropských zkušeností s milimetrovou astronomií," podotknul Karl Schuster, ředitel IRAMu a člen rady EHT.
EHT a pozorování, která dnes byla oznámena, reprezentují vyvrcholení mnoha let pozorovatelské, technické a teoretické práce. Je ukázkou globálního úsilí, které vyžadovalo úzkou spolupráci vědců celého světa. Třináct partnerských institucí vytvořilo dohromady EHT za pomoci již existujících přístrojů a podpory různých agentur. Nejvýznamnější finanční příspěvky pocházely z NSF (National Science Foundation, USA), evropské ERC (EU) a agentur ve východní Asii [8].
"ESO má radost, že k dnešnímu výsledku mohlo významně přispět skrze evropské vedení a stěžejní roli ve dvou dalekohledech EHT působících v Chile, ALMA a APEX," řekl generální ředitel ESO Xavier Barcons. "ALMA je nejcitlivější přístroj v EHT a jeho 66 antén významně přispělo k úspěchu EHT."
"Dosáhli jsme něčeho, co bylo ještě před pár desítkami let považováno za nemožné," shrnuje Doeleman. "Pokroky v technologii, propojení mezi nejlepšími radioteleskopy na světě a inovativní algoritmy všechny přispěly k úplně novým možnostem pohledu na černé díry a horizont událostí."
[1] Stín černé díry je nejblíž k tomu, co se dá ze samotné černé díry vyfotit. Černá díka je totiž úplně tmavý objekt, ze kterého světlo nemůže uniknout. Hranice černé díry - horizont událostí, podle kterého má EHT jméno - je asi 2,5krát menší než stín, který vrhá, a na průměr měří u supermasivní černé díry v M87 o něco méně než 40 miliard kilometrů.
[2] Supermasivní černé díry jsou relativně malé vesmírné objekty, kvůli čemuž je bylo až doteď nemožné přímo pozorovat. Rozměr horizontu událostí černé díry je úměrný její hmotnosti: čím větší hmotnost, tím větší stín. Díky enormně velké hmotnosti a relativní blízkosti je černá díra v galaxii M87 jednou z úhlově největších černých děr pozorovatelných ze Země - a to z ní udělalo cíl pozorování pomocí EHT.
[3] Ačkoli dalekohledy nejsou fyzicky propojené, jsou schopny synchronizovat naměřená data pomocí atomových hodin - vodíkových maserů - které přesně měří čas pozorování. Pozorování byla provedena na vlnové délce 1,3 mm během celosvětové kampaně v roce 2017. Každý teleskop v EHT vyprodukoval ohromné množství dat - asi 350 terabytů za den - které byly uschovány na výkonných héliem plněných hard discích. Tato data pak byla hromadně zpracovávána na specializovaných superpočítačích - tzv. korelátorech - v Ústavu Maxe Plancka pro radioastronomii a na observatoři MIT Haystack. Potom byla s velkým úsilím převedena na obrázek novými výpočetními metodami, které byly vyvinuty spolupracujícími institucemi.
[4] Před sto lety vyrazily dvě expedice na Princův ostrov nedaleko pobřeží Afriky a na Sobral v Brazílii, aby pozorovaly zatmění Slunce v roce 1919. Jejich záměrem bylo testování obecné teorie relativity pozorováním ohybu světla hvězd v okolí Slunce, jak to předpověděl Einstein. Jako ozvěnu těchto pozorování poslal EHT členy týmu na odlehlá a vzdálená místa Země k radioteleskopům, aby znovu testovali naše znalosti gravitace.
[5] Budoucí pozorování EHT budou ještě mnohem citlivější, protože se zúčastní také observatoř IRAM NOEMA, grónský dalekohled (Greenland Telescope) a dalekohled na Kitt Peaku (Kitt Peak Telescope).
[6] ALMA je projekt, na kterém spolupracují Evropská jižní observatoř (ESO; Evropa, a reprezentuje své členské státy), National Science Foundation (USA) a NINS (národní instituce přírodních věd, Japonsko) dohromady s NRC (národní vědecká rada, Kanada), ministerstvem vědy a techniky (MOST, Taiwan), astronomickým ústavem Academia Sinica (ASIAA, Taiwan) a korejským ústavem astronomie a kosmických věd (KASI, Korejská republika) a ve spolupráci s Chilskou republikou. APEX je provozován ESO, 30m dalekohled ústavem IRAM (partnerskými organizacemi jsou MPG/Německo, CNRS/Francie, IGN/Španělsko), dalekohled Jamese Clerka Maxwella je provozován EAO, velký milimetrový dalekohled Alfonse Serrana INAOE a UMass, submilimetrové pole SAO a ASIAA, submilimetrový dalekohled observatoří ARO (Arizona Radio Observatory). Dalekohled na jižním pólu provozuje univerzita v Chicagu s pomocí specializovaných EHT přístrojů z univerzity v Arizoně.
[7] BlackHoleCam je projekt podpořený Evropskou unií, jehož úkolem je pozorovat, měřit a teoreticky popisovat astrofyzikální černé díry. Hlavním cílem projektu BlackHoleCam a EHT (Event Horizon Telescope) je vytvořit úplně první obrázek supermasivní černé díry v blízké galaxii M87 s hmotností několika miliard Sluncí a její menší příbuzné Sgr A* v centru naší Galaxie. To umožňuje určit deformaci prostoročasu okolo černé díry s velkou přesností.
[8] EAO (East Asian Observatory), partner v EHT projektu, zastupuje mnoho oblastí v Asii, včetně Číny, Japonska, Korei, Taiwanu, Vietnamu, Thajska, Malajsie, Indie a Indonésie.
Uvedené výsledky byly prezentovány v sérii šesti vědeckých článků, které byly dnes publikovány ve speciálním vydání časopisu The Astrophysical Journal Letters.
V EHT je zapojeno více než 200 vědců z Afriky, Asie, Evropy, severní a jižní Ameriky. Tako mezinárodní spolupráce chce vytvořit co nejdetailnější obrázky černé díry za pomoci virtuálního radioteleskopu o rozměru země. S významnou mezinárodní podporou spojuje EHT již existující radioteleskopy do systému, čímž vznikne nové zařízení s největším úhlovám rozlišením, které kdy bylo dosaženo.
Jednotlivé radioteleskopy jsou: ALMA, APEX, IRAM 30-meter Telescope, IRAM NOEMA Observatory, James Clerk Maxwell Telescope (JCMT), Large Millimeter Telescope (LMT), Submillimeter Array (SMA), Submillimeter Telescope (SMT), South Pole Telescope (SPT), Kitt Peak Telescope a Greenland Telescope (GLT).
Konsorcium EHT se skládá ze 13 základních institucí: Academia Sinica Institute of Astronomy and Astrophysics, University of Arizona, University of Chicago, East Asian Observatory, Goethe-Universitaet Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max Planck Institute for Radio Astronomy, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University a Smithsonian Astrophysical Observatory.
ESO je nejvýznamnější mezivládní astronomická organizace v Evropě, která v současnosti provozuje nejproduktivnější pozemní astronomické observatoře světa. ESO má 16 členských států: Belgie, Česko, Dánsko, Finsko, Francie, Irsko, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko, Velká Británie a dvojici strategických partnerů – Chile, která hostí všechny observatoře ESO, a Austrálii. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a provoz výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také hraje vedoucí úlohu při podpoře a organizaci celosvětové spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal, nejvyspělejší astronomické observatoři světa pro viditelnou oblast, pracuje VLT (Velmi velký dalekohled) a dva přehlídkové teleskopy – VISTA a VST. Dalekohled VISTA pozoruje v infračervené části spektra a je největším přehlídkovým teleskopem světa, dalekohled VST je největším teleskopem navrženým k prohlídce oblohy ve viditelné oblasti spektra. ESO je významným partnerem zařízení APEX a revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Nedaleko Observatoře Paranal, na hoře Cerro Armazones, staví ESO nový dalekohled ELT (Extrémně velký dalekohled) s primárním zrcadlem o průměru 39 m, který se stane „největším okem lidstva hledícím do vesmíru“.
Heino Falcke; Chair of the EHT Science Council, Radboud University; The Netherlands; Tel.: +31 24 3652020; Email: h.falcke@astro.ru.nl
Luciano Rezzolla; EHT Board Member, Goethe Universität; Germany; Tel.: +49 69 79847871; Email: rezzolla@itp.uni-frankfurt.de
Eduardo Ros; EHT Board Secretary, Max-Planck-Institut für Radioastronomie; Germany; Tel.: +49 22 8525125; Email: ros@mpifr.de
Calum Turner; ESO Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Email: pio@eso.org